Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 253: 121354, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428359

RESUMEN

DNA-based monitoring of microbial communities that are responsible for the performance of anaerobic digestion of sewage wastes has the potential to improve resource recoveries for wastewater treatment facilities. By treating sludge with propidium monoazide (PMA) prior to amplicon sequencing, this study explored how the presence of DNA from dead microbial biomass carried over with feed sludge may mislead process-relevant biomarkers, and whether primer choice impacts such assessments. Four common primers were selected for amplicon preparation, also to determine if universal primers have sufficient taxonomic or functional coverage for monitoring ecological performance; or whether two domain-specific primers for Bacteria and Archaea are necessary. Anaerobic sludges of three municipal continuously stirred-tank reactors in Victoria, Australia, were sampled at one time-point. A total of 240 amplicon libraries were sequenced on a Miseq using two universal and two domain-specific primer pairs. Untargeted metabolomics was chosen to complement biological interpretation of amplicon gene-based functional predictions. Diversity, taxonomy, phylogeny and functional potentials were systematically assessed using PICRUSt2, which can predict community wide pathway abundance. The two chosen universal primers provided similar diversity profiles of abundant Bacteria and Archaea, compared to the domain-specific primers. About 16 % of all detected prokaryotic genera covering 30 % of total abundances and 6 % of PICRUSt2-estimated pathway abundances were affected by PMA. This showed that dead biomass in the anaerobic digesters impacted DNA-based assessments, with implications for predicting active processes, such as methanogenesis, denitrification or the identification of organisms associated with biological foams. Hence, instead of running two sequencing runs with two different domain-specific primers, we propose conducting PMA-seq with universal primer pairs for routine performance monitoring. However, dead sludge biomass may have some predictive value. In principal component analysis the compositional variation of 239 sludge metabolites resembled that of 'dead-plus-alive' biomass, suggesting that dead organisms contributed to the potentially process-relevant sludge metabolome.


Asunto(s)
Monitoreo Biológico , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Bacterias/metabolismo , Archaea/metabolismo , ADN/metabolismo , Victoria , Reactores Biológicos/microbiología , Metano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
2.
Sci Total Environ ; 894: 164546, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37295526

RESUMEN

Systematic and comprehensive characterisation of shear and solid-liquid separation properties of sludge across a wide range of solids concentration and volatile solids destruction (VSD) is critical for design and optimization of the anaerobic digestion process. In addition, there is a need for studies at the psychrophilic temperature range as many unheated anaerobic digestion processes are operated under ambient conditions with minimal self-heating. In this study, two digesters were operated at different combinations of operating temperature (15-25 °C) and hydraulic retention time (16-32 d) to ensure a wide range of VSD in the range of 0.42-0.7 was obtained. For shear rheology, the viscosity increased 1.3 to 3.3 times with the increase of VSD from 43 % to 70 %, while other parameters (temperature, VS fraction) having a negligible impact. Analysis of a hypothetical digester indicated that there is an optimum VSD range 65-80 % where increase in viscosity due to the higher VSD is balanced by the decrease in solids concentration. For solid-liquid separation, a thickener model and a filtration model were used. No significant impact of VSD on the solids flux, underflow solids concentrations or specific solids throughput was observed in the thickener and filtration model. However, there was an increase in average cake solids concentration from 21 % to 31 % with increase of VSD from 55 % to 76 %, indicating better dewatering behaviour.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Filtración , Viscosidad , Eliminación de Residuos Líquidos
3.
Water Res ; 222: 118903, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940153

RESUMEN

Due to the non-homogeneous and multiphase nature of anaerobic lagoon constituents, CFD modelling for process optimisation requires continuous functions for shear and solid-liquid separation properties across a large range of solids concentrations. Unfortunately, measurement of existing material properties of anaerobic sludges is limited to only shear or solid-liquid separation, or to a limited solids concentration. In this work, the shear properties of an anaerobic sludge were measured from 0.4 to 12.5 vol%, which corresponds to the solids concentrations seen in lagoons. The sludge showed Newtonian behaviour at 0.4 vol% and Herschel-Bulkley yield stress fluid behaviour for higher concentrations ranging from 0.5 to 12 vol%. We compared multiple approaches to determine relationships between the model fitting parameters of consistency, k, flow index, n, and shear yield stress, τy with solids volume fraction ϕ.The solid-liquid separation properties were measured from sedimentation and filtration experiments to obtain compressibility and permeability properties across all the above-mentioned concentrations, enabling development of hindered velocity sedimentation curves. Comparison to full-scale anaerobic digestate identified that the pilot lagoon sludge had faster sedimentation at a given solids concentration in comparison to the digestate. This is the first study on simultaneous rheological characterisation and solid-liquid separation behaviour of an anaerobic sludge across a wide range of concentrations, thus enabling CFD modelling of the hydrodynamics and performance of anaerobic lagoons.


Asunto(s)
Hidrodinámica , Aguas del Alcantarillado , Anaerobiosis , Reología , Viscosidad
4.
Front Microbiol ; 13: 1079136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590430

RESUMEN

The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.

5.
Water Res ; 82: 2-13, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26003332

RESUMEN

Quantification and comparison of the dewatering characteristics of fifteen sewage sludges from a range of digestion scenarios are described. The method proposed uses laboratory dewatering measurements and integrity analysis of the extracted material properties. These properties were used as inputs into a model of filtration, the output of which provides the dewatering comparison. This method is shown to be necessary for quantification and comparison of dewaterability as the permeability and compressibility of the sludges varies by up to ten orders of magnitude in the range of solids concentration of interest to industry. This causes a high sensitivity of the dewaterability comparison to the starting concentration of laboratory tests, thus simple dewaterability comparison based on parameters such as the specific resistance to filtration is difficult. The new approach is demonstrated to be robust relative to traditional methods such as specific resistance to filtration analysis and has an in-built integrity check. Comparison of the quantified dewaterability of the fifteen sludges to the relative volatile solids content showed a very strong correlation in the volatile solids range from 40 to 80%. The data indicate that the volatile solids parameter is a strong indicator of the dewatering behaviour of sewage sludges.


Asunto(s)
Aguas del Alcantarillado/química , Filtración , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
6.
Water Res ; 47(10): 3534-42, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23642401

RESUMEN

Drying pans are used during wastewater treatment (WWT) to store, stabilise and dry residual solids. The pans are filled with sludge that dries via exposure to sunshine and wind. We propose that drying pans be operated based on dry stacking principles, a technique with proven success in the mineral processing industry. The implementation of the dry stacking technique requires very little in the way of additional engineering beyond a conventional drying pan. By applying the sludge in thin layers, the sludge naturally forms its own stack with an angle that is dependent on the consistency of the material. The benefits of dry stacking are that the slope allows instantaneous run-off of rainfall and supernatant, allowing operation throughout the year rather than seasonally. The layering approach also maximises the evaporation achieved in the available deposition area compared to filling the pans sequentially. A series of laboratory tests were carried out on samples from Melbourne Water's Western Treatment Plant in Werribee, Australia, to provide validation of the dry stacking concept for WWT sludges. Rheological tests showed that samples had appropriate flow properties to form stacks. Drying and re-wetting tests on the samples indicated that a sloped, partially dry sludge sheds rainfall, depending on the slope, cake dryness and amount of rainfall. Local rainfall data was used to estimate a potential increase in pan throughput of 65%-140% due to dry stacking. The greatest improvements were predicted to occur during wetter years. In combination, the results indicated that dry stacking has the potential to dramatically improve the performance of WWT sludge drying pans.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Australia , Diseño de Equipo , Reología , Eliminación de Residuos Líquidos/instrumentación
7.
Langmuir ; 23(17): 9076-82, 2007 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-17658864

RESUMEN

The kinetics of geopolymer formation are monitored using a novel in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic technique. Reaction rates are determined from the intensity variation of the bands related to the geopolymer gel network and the unreacted fly ash particles. Comparison with deuterated geopolymer samples provides critical information regarding peak assignments. An initial induction (lag) period is observed to occur for hydroxide-activated geopolymers, followed by gel evolution according to an approximately linear reaction profile. The length of the lag period is reduced by increasing the concentration of NaOH. An increase in the rate of network formation also occurs with increasing NaOH concentration up to a maximum point, beyond which an increased NaOH concentration leads to a reduced rate of network formation. This trend is attributed to the competing effects of increased alkalinity and stronger ion pairing with an increase in NaOH concentration. In situ analysis also shows that the rate of fly ash dissolution is similar for all moderate- to high-alkali geopolymer slurries, which is attributed to the very highly water-deficient nature of these systems and is contrary to predictions from classical glass dissolution chemistry. This provides for the first time detailed kinetic information describing fly ash geopolymer formation kinetics.

8.
Langmuir ; 23(15): 8170-9, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17590027

RESUMEN

Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...